
Quantum Algorithms via Linear Algebra

— Deutsch’s Algorithm

Dao-Yun Xu

College of Computer Science and Technology, Guizhou University

Outline

7. Phil’s Algorithm

8. Deutsch’s Algorithm

9. The Deutsch-Jozsa Algorithm

7. Phil’s Algorithm

Each algorithm will be presented as computing a series of

vectors. The goal of Phil’s Algorithm is to give the schema

presenting quantum algorithms. Formally, it is of form:

“Given an X , the algorithm finds a Y within time Z”

by a series of explicitly vectors from a start vector to last vector.

Then we will understand what the result of the last step of the

algorithm does because in all cases the last step is a quantum

measurement.

To understand measurements, we must know the amplitudes

given by the last vector because the measurement returns k with

the amplitude squared of the k-th coordinate.

A Two-Qubit Example

Phil carries out the composition of V1 = H ⊗ I and

V2 = CNOT .

We index vectors in this two-qubit space by xy , where x and y

are single bits.

Algorithm:

(1). The initial vector is a0 so that a0(00) = 1,i.e., a0 = e00.

(2). The next vector a1 is the result of applying the Hadamard

transform on qubit line 1 only.

(3). The final vector a2 is the result of applying CNOT to a1.

Analysis

(1) a0 = e00.

(2) a1 = 1√
2

(e0 + e1)⊗ e0

= 1√
2

(e00 + e10)

= 1√
2

[1, 0, 1, 0]T .

(3) By CNOT e00 = e00, CNOT e10 = e11, we have

a2 = 1√
2

(e00 + e11) = 1√
2

[1, 0, 0, 1]T .

So far, we have not said anything about taking measurements

— instead, we are able to specify the final pure quantum state:

1√
2

(e00 + e11).

Entangled pairs:

In the Hilbert space coordinates it doesn’t look exciting, but

let’s interpret it back in the quantum coordinates:

a2 = 1√
2

(e00 + e11).

This state is pure and not a tensor product of two other states,

so it is entangled.

If we measure both qubits, then we will only get 00 or 11,

never 01 or 10.

If we measure just the first quantum coordinate and get

0, then we know already that any measurement of the

second quantum coordinate will give 0.

Thus, Phil’s algorithm has produced an entangled pair of

qubits. This is basics of qutantum communication.

Bell’s states: (EPR entangle pairs)

a2 = (CNOT · H)a0 :

a0 a2 Beel ′s states

e00
1√
2

(e00 + e11) 1√
2

[1, 0, 0, 1]T β00

e01
1√
2

(e01 + e10) 1√
2

[0, 1, 1, 0]T β01

e10
1√
2

(e00 − e11) 1√
2

[1, 0, 0,−1]T β10

e11
1√
2

(e01 + e10) 1√
2

[0, 1,−1, 0]T β11

EPR entangled pair β00 and qutantum communication:

The EPR entangle pair β0,0 becomes significant:

When we are able to give the first qubit to “Alice”’ sitting 10

miles east of Lake Geneva and the second qubit to her friend

“Bob” sitting 10 miles west, and each does a measurement at

instants such that no signal of Alice’s result can reach Bob before

he measures and vice versa.

Whatever result Alice gets, Bob gets too. It seems that

is not involved in distance between Alice and Bob.

However, we do not have to think in physical terms — Phil’s

output is just an ordinary vector in our four-dimensional Hilbert

space. What we do need to finish the analysis of our algorithms, is

measurement.

Application of β00: Quantum cipher

For a single qubit
∣∣x〉 = (α

∣∣0〉+ β
∣∣1〉) = (αe0 + βe1):

⊕

H M1

M2

XM2 ZM1

x

β00

{
x

a0 = (αe0 + βe1)⊗ β00 = (αe0 + βe1)⊗ 1√
2

(e00 + e11);

where X =

(
0 1

1 0

)
Z =

(
1 0

0 −1

)
The first two qubits is for Alice, and the third qubit is for Bob.

Application of β00: Quantum cipher

⊕

H M1

M2

XM2 ZM1

x

β00

{
x

a0 a1 a2 a3

Alice measures first two qubits, and Bob read the result of

measuring third qubit by Alice’s measurements, which is one of the

following four results:

00 7→ a3(00) ≡ (αe0 + βe1)

01 7→ a3(01) ≡ (αe1 + βe0)

10 7→ a3(10) ≡ (αe0 − βe1)

11 7→ a3(11) ≡ (αe1 − βe0)

Representing matrices by maze graphes

As an example, we consider the three basic matrices:

H = 1√
2

(
1 1

1 −1

)
I =

(
1 0

0 1

)
X =

(
0 1

1 0

)
It correspond to the following three graphes respectively.

0

1

0

1
−1

0

1

0

1

0

1

0

1

H I X

Product of matrices:

H · H :
0

1

0

1
−1 −1

H · X :
0

1

0

1
−1

Tensor product of matrices: H ⊗ I and I ⊗ H

H ⊗ I =


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 I ⊗ H =


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

.

1qb 2qb
00

01

10

11

00

01

10

11
−1

−1

1qb 2qb
00

01

10

11

00

01

10

11
−1

−1

Tensor product of matrices: H ⊗ I and I ⊗ H

H ⊗ I =


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 I ⊗ H =


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

.

00

01

10

11

00

01

10

11
−1

−1

00

01

10

11

00

01

10

11
−1

−1

Tensor product of Hadamard matrices: H ⊗ H = (H ⊗ I)(I ⊗ H)

1qb 2qb
00

01

10

11

00

01

10

11
−1

−1

−1

−1

00

01

10

11

−1

00

01

10

11
−1

00

01

10

11
−1

−1

Quantum mazes:

Maze for Hadamard on qubit 1 followed by CNOT on 1 and 2:

U = (H ⊗ I)(CNOT)

Maze for two consecutive Hadamard gates:

He0 = 1√
2

(e0 + e1),He1 = 1√
2

(e0 − e1)

H · (He0) = 1√
2
H(e0 + e1) = 1

2(2e0) = 1
2(2, 0)T

H · (He1) = 1√
2
H(e0 − e1) = 1

2(2e1) = 1
2(0, 2)T

Outline

7. Phil’s Algorithm

8. Deutsch’s Algorithm

9. The Deutsch-Jozsa Algorithm

8. Deutsch’s Algorithm

Deutsche’s algorithm operates on a Boolean function:

f : {0, 1} → {0, 1}.

The function has following four forms:

f (x) ≡ 0; f (x) ≡ 1; f (x) = x ; f (x) = x .

The goal is to tell whether the function is a constant by

performing only one evaluation of the function.

Clearly this is impossible in the classical model of computation,

but the quantum model achieves this in a sense delineated below.

8.1. The Algorithm

We will present the algorithm as computing a series of vectors

a0, a1, a2, a3, each of which is in the real Hilbert space H1 ⊗H2,

where H1 and H2 are two-dimensional spaces.

We index vectors in this space by xy , where x and y are single

bits.

Recall from section 4.3 that we work with its invertible

extension, which we here symbolize as

f ′(xy) = x(f (x)⊕ y).

Thus, the “input” to the algorithm is really the choice of f as a

parameter.

By the unitary matrix Uf , we have:∣∣x〉⊗ ∣∣y〉 Uf−−−−→ Uf

∣∣x〉⊗ ∣∣y〉 =
∣∣x〉⊗ ∣∣y ⊕ f (x)

〉
.

The algorithm always uses the same input vector and goes as

follows:

1. The initial vector is a0 so that a0(01) = 1.

2. The next vector a1 is the result of applying the Hadamard

transform on each Hi of the space with i = 1, 2 separately.

3. Then the vector a2 is the result of applying Uf ′ where

f ′(xy) = x(f (x)⊕ y).

4. The final vector a3 is the result of applying the Hadamard

transform again, but this time only to H1.

x x

y y ′ ⊕ f (x ′)

H H

H

Uf ′

x ′ x ′

y ′ y′ ⊕ f (x′)

↑
a0

↑
a1

↑
a2

↑
a3

U1 = H ⊗ H,U1 = Uf ′ ,U2 = H ⊗ I

U = U3U2U1, a3 = Ua0

We take initial vector a0 = e01 =
∣∣0〉∣∣1〉 =

∣∣0〉⊗ ∣∣1〉, where

∣∣0〉 =

(
1

0

) ∣∣1〉 =

(
0

1

)
.

Note that in case f is the identity function, f ′ becomes the

Controlled − NOT function, and Uf ′ becomes the 4⊗ 4 CNOT

matrix. Because f is the identity, we rename Uf ′ to UI . Similarly,

we write UX , UT , and UF for the cases f being the negation,

always-true, and always-false function, respectively.

UI =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (f (x) = x), UX =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 (f (x) = x)

UT =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 (f (x) ≡ 1), UF =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (f (x) ≡ 0)

xy → x(y ⊕ f (x))

Note that the matrices UT and UF are unitary even though

the always-true and always-false functions are not reversible.

This illustrates the quantum trick of preserving the “x”

argument of these functions as the first qubit and recording f (x) in

terms of its effect when exclusive-or’ed with the second qubit, y .

The chain of three matrices is applied to the start vector

a0 = e01 on the right, producing in each of the four cases the

vector a3.

a3 = U3U2U1e10

(1)
∣∣0〉⊗ ∣∣1〉;

(2) → 1√
2

(
∣∣0〉+

∣∣1〉)⊗ 1√
2

(
∣∣0〉− ∣∣1〉); (By U1 = H ⊗ H)

= 1
2(
∣∣0〉∣∣0〉− ∣∣0〉∣∣1〉) + 1

2(
∣∣1〉∣∣0〉− ∣∣1〉∣∣1〉);

(3) → Uf (12(
∣∣0〉∣∣0〉− ∣∣0〉∣∣1〉) + 1

2(
∣∣1〉∣∣0〉− ∣∣1〉∣∣1〉));

= 1
2(
∣∣0〉∣∣0⊕ f (0)

〉
−
∣∣0〉∣∣1⊕ f (0)

〉
) (By U2 = Uf ′)

+1
2(
∣∣1〉∣∣0⊕ f (1)

〉
−
∣∣1〉∣∣1⊕ f (1)

〉
);

= 1
2(
∣∣0〉∣∣0⊕ f (0)

〉
+
∣∣1〉∣∣0⊕ f (1)

〉
)

−1
2(
∣∣0〉∣∣1⊕ f (0)

〉
+
∣∣1〉∣∣1⊕ f (1)

〉
);

= 1√
2

[(−1)f (0)
∣∣0 > +(−1)f (1)

∣∣1 >]⊗ 1√
2

(
∣∣0〉− ∣∣1〉)

= a2;

(4) → a3; (By U3 = H ⊗ I)

a2 =

{
± 1√

2
(
∣∣0〉+

∣∣1〉)⊗ 1√
2

(
∣∣0〉− ∣∣1〉) if f (0) = f (1)

± 1√
2

(
∣∣0〉− ∣∣1〉)⊗ 1√

2
(
∣∣0〉− ∣∣1〉) if f (0) 6= f (1)

a3 =

{
±
∣∣0〉⊗ 1√

2
(
∣∣0〉− ∣∣1〉) if f (0) = f (1)

±
∣∣1〉⊗ 1√

2
(
∣∣0〉− ∣∣1〉) if f (0) 6= f (1)

= ±
∣∣f (0)⊕ f (1)

〉
⊗ 1√

2
(
∣∣0〉− ∣∣1〉)

By measuring first qubit, we can determinate the value of

f (0)⊕ f (1).

Note that f (0)⊕ f (1) = 0 if f (0) = f (1), otherwise,

f (0)⊕ f (1) = 1.

A measurement of a3 will then determine whether we are in

one of the two constant cases, where UT or UF is used, or whether

we have one of the other two cases UI or UX , which represent the

nonconstant functions f .

In classical algorithms, which need to call f twice to

evaluate f (0) and f (1), the quantum algorithm can tell the

difference with just one Uf ′ oracle matrix, where again f ′ is

the “controlled” version of f .

Measuring

We take the following two orthogonal project operators:

P0 =
∣∣0〉〈0∣∣ =

(
1

0

)
(1, 0) =

(
1 0

0 0

)

P1 =
∣∣1〉〈1∣∣ =

(
0

1

)
(0, 1) =

(
0 0

0 1

)
here P0 + P1 = I .

Thus, the set {P0,P1} of matrices forms a group of complete

measurement matrices on one qubit in Hibert space of

2-dimension.

Generally, we take the following two orthogonal vectors:∣∣+
〉

1√
2

(
∣∣0〉+

∣∣1〉, ∣∣− 〉 1√
2

(
∣∣0〉− ∣∣1〉

Define two orthogonal project operators:

P+ =
∣∣+
〉〈

+
∣∣, P− =

∣∣− 〉〈− ∣∣,
where P+ + P− = I .

Thus, the set {P+,P−} of matrices forms a group of complete

measurement matrices on one qubit in Hibert space of

2-dimension.

8.2. The Analysis

Figure 8.1. Maze for Deutsch’s algorithm.

Given the input e01, he enters at 01. In the figure, we see the

same maze stage at left and right, which corresponds to a

Hadamard gate on the first of two qubit lines.

(H ⊗ H)e01 = (I ⊗ H) · (H ⊗ I)e01

= (I ⊗ H)(H ⊗ I)(e0 ⊗ e1)

= 1√
2

(I ⊗ H)(e0 + e1)⊗ e1)

= 1
2(e0 + e1)⊗ (e0 − e1)

= 1
2(e00 − e01 + e10 − e11)

= 1
2(1,−1, 1,−1)

One of the four matrices above is filled in the blank for

Uf ′ in the figure 8.1.

Each is a permutation matrix, so its four corridors will run

across with no branching:

UI =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 UX =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



UT =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 UF =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Figure 8.2. Maze stages for possible queried functions.

UF : makes the corridors run straight across,

UX : interchanges the top two,

UI : interchanges the bottom two, and

UT : swaps both top two and bottom two.

THEOREM 8.1. A measurement of the vector a3 will return 0y ,

for some y , if and only if f is a constant function. Thus, Deutsc’s

algorithm tells whether f is constant using just one application of

Uf ′ .

The key of this theorem: one application of f and one

measurement will tell whether f is a constant function.

To save multiplying out the 4× 4 matrices for each of the four

cases — a method that doesn’t scale either — we use our notation

indexing vectors a by a(00), a(01), a(10), a(11).

The proof depends on the following lemma, in which we use

binary XOR on bits to denote a number.

LEMMA 8.2. The following are true:

(1). For all xy , a1(xy) = 1
2(−1)y .

(2). For all xy , a2(xy) = 1
2(−1)f (x)⊕y .

(3). For all xy , |a3(xy)|2 = 1
8 |(−1)f (0) + (−1)f (1)⊕x |2.

Proof. (1). It is clear that applying Hadamard gates independently

yields

a1(xy) = 1
2

∑
s,t(−1)x ·s(−1)y ·ta0(st)

Thus, by the definition of a0,

a1(xy) = 1
2(−1)x ·0(−1)y ·1a0(01) = 1

2(−1)y .

(2). By definition of the matrix Uf ′ it follows that

a2(xy) = a1(x(f (x)⊕ y)) = 1
2(−1)f (x)⊕y .

Hadamard transform: b = H2na

b(x) =
∑

y∈{0,1}n(−1)x ·yb(y)

(3) By definition of the Hadamard transform, and (2)

a3(xy) = 1√
2

∑
t∈{0,1}(−1)x ·ta2(ty)

= 1
2
√
2

∑
t∈{0,1}(−1)x ·t(−1)f (t)⊕y .

The sum is expanded, and then it is

1
2
√
2

((−1)f (0)⊕y + (−1)x⊕f (1)⊕y).

We can factor out the common term (−1)y to get the

amplitude:

|a3(xy)|2 = 1
8 |(−1)f (0) + (−1)x⊕f (1)|2. �

Proof of Theorem 8.1.

By lemma 8.2,

|a3(0y)|2 = 1
8 |(−1)f (0) + (−1)f (1)|2.

If f is constant, then this expression is equal to

|a3(0y)|2 = 1
8 · 2

2 = 1
2 .

If f is not constant, then it is equal to 0. �

8.3. Superdense Coding and Teleportation

Superdense coding and teleportation applications involve a

physical interpretation and realization of qubits.

Consider talk of “Alice” and “Bob” across Lake Geneva from

each other.

First consider a general product state

c = (a0e0 + a1e1)⊗ (b0e0 + b1e1)

= a0b0e00 + a0b1e01 + a1b0e10 + a1b1e11

where |a0|2 + |a1|2 = 1 and |b0|2 + |b1|2 = 1.

We can regard a = a0e0 + a1e1 as a qubit wholly in the control

of Alice and b = b0e0 + b1e1 as a qubit owned by Bob, with

c = a⊗ b standing for the joint state of the system.

For a general pure state of the form

d = d00e00 + d01e01 + d10e10 + d11e11

with |d00|2 + |d01|2 + |d10|2 + |d11|2 = 1.

Alice controls the first index, which plays d00, d01 against

d10, d11, while Bob controls the second index, which plays the

even-index entries d00, d10 in places 0 and 2 off against the

odd entries d01, d11 in places 1 and 3.

There is one other partition that plays off two against two, the

“outers” d00, d11 versus the “inners” d01, d10.

This playing-off can be achieved directly by a different kind of

measurement that projects onto the transformed basis whose four

elements are given by e00 ± e11 and e01 ± e10, each normalized by

dividing by
√

2.

This basis is named for John Bell:

B00 = 1√
2

(e00 + e11)

B01 = 1√
2

(e10 + e01)

B10 = 1√
2

(e00 − e11)

B11 = 1√
2

(e10 − e01)

The physical realization is that after converting our usual

all-zero start state e00 to

d = 1√
2

(e00 + e11)

we really can give Alice a particle representing the first coordinate

and shoot Bob across the lake an entangled particle representing

the second coordinate.

The experiments have demonstrated that Alice and Bob can for

some time keep these particles in this joint state.

Moreover, Alice is physically able to operate further on this

state by matrix operators applied only to her qubit, that is,

operators of the form U ⊗ I where U is a 2× 2 unitary matrix.

In particular, let U be one of four things:

(1) I (for 00), (2) X (for 01),

(3) Z (for 10), or (4) iY = XZ (for 11)

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)
Thus, Alice is applying one of the Pauli matrices.

Let Alice do one of these four things and then shoot her qubit

across the lake to Bob.

To show the similarity to the analysis of Deutsch’s algorithm,

we draw the corresponding maze diagram for the circuit with a

missing stage, and the diagrams for the four possible stages Alice

can insert:

H ⊗ I CNOT U ⊗ I CNOT H ⊗ I

e00 7→ 1√
2

(e0 + e1)⊗ e0 (By H ⊗ I)

= 1√
2

(e00 + e10)

7→ 1√
2

(e00 + e11) (By CNOT)

7→ 1√
2

(e00 + e11) (By U ⊗ I ,U = I)

7→ 1√
2

(e00 + e10) (By CNOT)

7→ 1
2((e00 + e10) + (e00 − e10)) (By H ⊗ I)

= e00

Because the amplitude divisor is 2, this already entails that the

Phils at the other exit points always cancel, but one may enjoy

verifying this from the two figures. Hence, the measurement

always gives the same exit point depending only on the operation

Alice chose.

The main point is that Alice’s four choices lead to four different

results, so that Bob is able to tell what Alice did.

Why might this be surprising?

Bob has learned two bits of information as a result of the

single qubit that Alice sent across the lake.

This seems to say that the one qubit carried two classical

bits of information. However, there was one previous connection

between them–via the intermediary who gave them the entangled

qubits to begin with.

Holevo’s theorem expresses the deep principle that a total

transmission of n qubits can carry no more than n bits of classical

information.

Thus, there must always have been some prior interaction

between them or their environments to produce the entanglements.

Once they are in place, however, Alice can electively transmit

information at a classically impossible two-for-one rate–at the cost

of consuming entanglement resources for each pair of bits. This

explains the name superdense coding.

In quantum information theory, superdense coding is a

technique used to send two bits of classical information using

only one qubit.

It is the inverse of quantum teleportation, which sends one

qubit with two classical bits.

Both superdense coding and quantum teleportation require, and

use up, entanglement between the sender (Alice) and receiver

(Bob) in the form of Bell pairs.

B00 = 1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)

are distributed to Alice and Bob.

The first subsystem, denoted by subscript A, belongs to Alice

and the second, B, system to Bob.

In quantum information theory, superdense coding is a

technique used to send two bits of classical information using

only one qubit.

It is the inverse of quantum teleportation, which sends one

qubit with two classical bits.

Both superdense coding and quantum teleportation require, and

use up, entanglement between the sender (Alice) and receiver

(Bob) in the form of Bell pairs.

B00 = 1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)

are distributed to Alice and Bob.

The first subsystem, denoted by subscript A, belongs to Alice

and the second, B, system to Bob.

(1) Suppose Alice wants to send the classical bits 00.

She will perform identity unitary operation on her particle. Her

entangled qubit remains unchanged. The resultant tangled qubit

would be

|B00〉 = 1√
2

(|0A0B〉+ |1A1B〉).

(2) Suppose Alice wants to send the classical bits 01.

She will perform X unitary operation. After the application of

X unitary gate the resultant entangled quantum state would be

|B01〉 = 1√
2

(|1A0B〉+ |0A1B〉).

(3) Suppose Alice wants to send the classical bits 10.

She will perform Z unitary operation. After the application of

Z unitary gate the resultant entangled quantum state would be

|B10〉 = 1√
2

(|0A0B〉 − |1A1B〉).

(4) Suppose Alice wants to send the classical bits 11.

She will perform XZ unitary operation. After the application of

XZ unitary gate the resultant entangled quantum state would be

|B11〉 = 1√
2

(|1A0B〉 − |0A1B〉).

where X ,Z , I ,XZ (= −iY) are Pauli gates. B00,B01,B10,B11 are

called Bell states.

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)

Quantum teleportation involves three qubits, two initially

owned by Alice and one by Bob.

Alice and Bob share entangled qubits as before, whereas Alice’s

other qubit is in an arbitrary (pure) state c = ae0 + be1. Alice has

no knowledge of this state, and hence cannot tell Bob how to

prepare it, yet entirely by means of operations on her side of the

lake, she can ensure that Bob can possess a qubit in the identical

state.

I ⊗ H ⊗ I , I ⊗ CNOT ,CNOT ⊗ I ,H ⊗ I ⊗ I

The start state is c ⊗ e00, which equals ae000 + be100. After the

first two gates, the state is

c ⊗ 1√
2

(e00 + e11)

with Alice still in possession of the first coordinate of the entangled

basis vectors.

The point is that the rest of the circuit involves operations by

Alice alone, including the measurements, all done on her side of

the lake. This is different from using a two-qubit swap-gate to

switch the c part to Bob, which would cross the lake.

No quantum interference is involved, so a maze diagram helps

visualize the results even with “arbitrary-phase Phils” lined up at

the entrances for e000 and e100 as shown in the following figure.

(ae0 + be1)⊗ e00 7→ 1√
2

(ae0 + be1)⊗ (e0 + e1)⊗ e0 (I ⊗ H ⊗ I)

= 1√
2

(ae000 + ae010 + be100 + be110)

7→ 1√
2

(ae000 + ae011 + be100 + be111) (I ⊗ CNOT)

7→ 1√
2

(ae000 + ae011 + be110 + be101) (CNOT ⊗ I)

7→ 1√
2

[a(e000 + e100) + a(e011 + e111)+ (H ⊗ I ⊗ I)

b(e010 − e110) + b(e001 − e101)]

= 1√
2

(ae000 + be001 + be010 + ae011+

+ae100 − be101 − be110 + ae111)

Because Bob’s qubit is the rightmost index, the measurement of

Alice’s two qubits selects one of the four pairs of values divided off

by the bars at the right.

Each pair superposes to yield the value of Bob’s qubit after the

two measurements “collapse” Alice’s part of the system.

The final step is that Alice sends two classical bits across the

lake to tell Bob what results she got, that is, which quadrant was

selected by nature.

The rest is in some sense the inverse of Alice’s step in the

superdense coding: Bob uses the two bits to select one of the Pauli

operations I ,X ,Z , iY , respectively, and applies it to his qubit c ′ to

restore it to Alice’s original value c .

Neither Bob nor Alice is ever able to peek inside the qubit c to

read the complex-number values of a and b or even get them right

to more than a few uncertain bits of accuracy, amounting to at

most one bit of solid information.

This is already the essence of the natural law corresponding to

Holevo’s theorem.

However, streams of qubits with prescribed values c can be

generated, and experiments have shown that they can be received

by Bob with high statistical fidelity over distances of many miles.

Outline

7. Phil’s Algorithm

8. Deutsch’s Algorithm

9. The Deutsch-Jozsa Algorithm

9. The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm operates on a Boolean function:

f : {0, 1}n → {0, 1}.

The goal is to tell apart the cases where the function is

constant or balanced by performing only one evaluation of the

function. Here a function is balanced if it has the same number

of 1’s and 0’s as output.

If neither case holds then the output is immaterial. Clearly this

goal is impossible in the classical model of computation, even with

as many as 2n−1 evaluations of f on Boolean arguments. However,

it is possible in the quantum model with just one evaluation.

Deutsch’s algorithm was important for being the first quantum

algorithm, even though it only barely outperformed the classical

one.

9.1. The Algorithm

We will present the algorithm as computing a series of vectors

a0, a1, a2, a3, each which is in the real Hilbert space H1 ×H2,

where H1 has dimension N = 2n and H2 has dimension 2.

We index vectors in this space by xy , where x is n bits and y is

a single bit.

1. The initial vector is a0 so that a0(0n1) = 1. That is,

a0 = e0n1.

2. The next vector a1 is the result of applying the Hadamard

transform on each Hi of the space with i = 1, 2 separately.

3. Then the vector a2 is the result of applying Uf ′ where

f ′(xy) = x(f (x)⊕ y).

4. The final vector a3 is the result of applying the Hadamard

transform again, but this time only to H1.

x x

y y ′ ⊕ f (x ′)

H2n H2n

H

Uf ′

x ′ x ′

y ′ y′ ⊕ f (x′)

↑
a0

↑
a1

↑
a2

↑
a3

U1 = H2n ⊗ H,U2 = Uf ′ ,U3 = H2n ⊗ I

a0 = 0n1, ai = Uiai−1 (i = 1, 2, 3)

9.2. The Analysis

THEOREM 9.1. A measurement of the vector a3 will return 0ny ,

for some y , if and only if f is a constant function. Thus, the

Deutsch-Jozsa algorithm distinguishes the cases of f being

constant or balanced using only one evaluation of Uf ′ .

This theorem is the key: one measurement will work to tell

whether f is a constant function. The proof depends on the

following lemma.

LEMMA 9.2. The following are true:

(1) For all x , y , a1(xy) = 1√
2N

(−1)y .

(2) For all x , y , a2(xy) = 1√
2N

(−1)f (x)⊕y .

(3) For all x , y , |a3(xy)|2 = 1
2N2 |

∑
t∈{0,1}n(−1)x ·t(−1)f (t)|2.

Proof. (1). It is clear that applying the Hadamard gates

independently yields

a1(xy) = 1√
2N

∑
t∈{0,1}n,u∈{0,1}(−1)t·x(−1)u·ya0(tu)

where we remind that x · t is the XOR-based inner product of

Boolean strings, whereas y · u involves just single bits.

Thus, by the definition of a0,

a1(xy) = 1√
2N

(−1)x ·0
n
(−1)1·y = 1√

2N
(−1)y .

(2). By definition of the matrix Ug it follows that

a2(xy) = a1(x(f (x)⊕ y)) = 1√
2N

(−1)f (x)⊕y .

(3). By definition of the Hadamard transform,

a3(xy) = 1√
N

∑
t∈{0,1}n(−1)x ·ta2(ty)

= 1√
2N

∑
t∈{0,1}n(−1)x ·t(−1)f (t)⊕y �

Proof of Theorem 9.1. By lemma 9.2,

|a3(0ny)|2 = 1
2N2 |

∑
t∈{0,1}n(−1)x ·t(−1)f (t)|2

If f is constant, then this expression is equal to

1
2N2 |

∑
t∈{0,1}n(−1)0

n·t |2 = 1
2 .

Thus, the two equivalent cases y = 0, 1 each have probability 1
2 ,

making it certain that the measurement yields 0ny .

If f is not constant, then it is equal to

1
2N2 |

∑
t∈{0,1}n(−1)0

n·t(−1)f (t)|2 = 0.

The sum
∑

t∈{0,1}n(−1)f (t) is 0 because f is balanced, and so

the measurement never yields 0ny . �

	7. Phil's Algorithm
	8. Deutsch's Algorithm
	9. The Deutsch-Jozsa Algorithm

